464 research outputs found

    A Computing Approach Using Probabilistic Neural Networks for Instantaneous Appraisal of Rear-End Crash Risk

    Get PDF
    Computing and information technology has significantly increased the capabilities to collect, store, and analyze freeway traffic surveillance data. The most common forms of such data are collected using the underground loop detectors. In the recent past the potential of using these data for identification of crash-prone conditions has been explored. In the present work, application of probabilistic neural networks (PNN) is explored to identify conditions prone to rear-end crashes on the freeway. PNN is a neural network implementation of the well-documented Bayesian classifier. In this research the rear-end crashes observed on the Interstate-4 corridor in Orlando FL are divided into two groups based on the average traffic speeds observed around the crash location prior to the crash occurrence. Using decision tree-based classification it was observed that although these two groups of crashes have comparable frequencies, traffic conditions belonging to one of the groups (characterized by a low-speed traffic regime) are comparatively rare on the freeways. Hence, if those conditions are encountered on the freeway in real time, then conditions may be considered prone to rear-end crashes. As conditions belonging to the other group of rear-end crashes (characterized by a medium-to-high speed regime) are more commonly observed on the freeway, PNN-based classification models are developed for this group. The rear-end crashes along with a sample of randomly selected noncrash cases were used to calibrate the classifiers. The output layer of the PNN models was modified to provide a measure of crash risk, instead of the binary classification based on an arbitrary threshold. A desirable threshold on this output may be established to separate crash-prone conditions from “normal” freeway traffic

    Crash Data Analysis: Collective vs. Individual Crash Level Approach

    Get PDF
    Introduction Traffic safety literature has traditionally focused on identification of location profiles where “more crashes are likely to occur” over a period of time. The analysis involves estimation of crash frequency and/or rate (i.e., frequency normalized based on some measure of exposure) with geometric design features (e.g., number of lanes) and traffic characteristics (e.g., Average Annual Daily Traffic [AADT]) of the roadway location. In the recent past, a new category of traffic safety studies has emerged, which attempts to identify locations where a “crash is more likely to occur.” The distinction between the two groups of studies is that the latter group of locations would change based on the varying traffic patterns over the course of the day or even within the hour. Method Hence, instead of estimation of crash frequency over a period of time, the objective becomes real-time estimation of crash likelihood. The estimation of real-time crash likelihood has a traffic management component as well. It is a proactive extension to the traditional approach of incident detection, which involves analysis of traffic data recorded immediately after the incident. The units of analysis used in these studies are individual crashes rather than counts of crashes. Results In this paper, crash data analysis based on the two approaches, collective and at individual crash level, is discussed along with the advantages and shortcomings of the two approaches

    Predicting Traffic Crashes Using Real-Time Traffic Speed Patterns

    Get PDF
    Despite of the recent advances in traffic surveillance technology and ever-growing concern over traffic safety, there have been very few research efforts establishing Jinks between the real-time traffic flow parameters and crash occurrence. This study aims at the identification of the patterns in the freeway loop detector data, which potentially precede traffic crashes. This would have impOltant implications for Advanced Traffic Management Centers (ATMC). ATMCs could then be able to predict the potential for crashes on freeways and take action to reduce this hazard by warning drivers or introducing variable speed limits. Solution approach to this research problem essentially involves classification of traffic speed patterns emerging from the loop detector data. Historical crash and loop detector data from Interstate-4 corridor in Orlando metropolitan area has been used for this study. The classification methodology adopted here is the probabilistic neural network (PNN): neural network implementation of well-known Bayesian-Parzen classifier. The PNN, not being a training based classifier, has strong statistical basis. The inputs to the model found best suitable for classification were logarithms of the coefficient of variation in speed obtained from three stations, namely, station of the crash (i.e. station nearest to the crash location) and two stations immediately preceding it in the upstream direction, during 5 minute time slice of 10-15 minutes prior to the crash time. The results showed that about 70% of the crashes on the evaluation dataset could be identified using the classifiers developed here

    Assessment of Freeway Traffic Parameters Leading to Lane-Change Related Collisions

    Get PDF
    This study aims at ‘predicting’ the occurrence of lane-change related freeway crashes using the traffic surveillance data collected from a pair of dual loop detectors. The approach adopted here involves developing classification models using the historical crash data and corresponding information on real-time traffic parameters obtained from loop detectors. The historical crash and loop detector data to calibrate the neural network models (corresponding to crash and non-crash cases to set up a binary classification problem) were collected from the Interstate-4 corridor in Orlando (FL) metropolitan area. Through a careful examination of crash data, it was concluded that all sideswipe collisions and the angle crashes that occur on the inner lanes (left most and center lanes) of the freeway may be attributed to lane-changing maneuvers. These crashes are referred to as lane-change related crashes in this study. The factors explored as independent variables include the parameters formulated to capture the overall measure of lane-changing and between-lane variations of speed, volume and occupancy at the station located upstream of crash locations. Classification tree based variable selection procedure showed that average speeds upstream and downstream of crash location, difference in occupancy on adjacent lanes and standard deviation of volume and speed downstream of the crash location were found to be significantly associated with the binary variable (crash versus non-crash). The classification models based on data mining approach achieved satisfactory classification accuracy over the validation dataset. The results indicate that these models may be applied for identifying real-time traffic conditions prone to lane-change related crashes

    Spatiotemporal Variation of Risk Preceding Crashes on Freeways

    Get PDF
    Research into the application of freeway loop detector data for traffic safety has gained momentum in recent years. The incompleteness of data from loop detectors has been a common problem in both the development and the implementation of models. The effect of individual crash precursors, obtained one at a time from a series of loop detectors, on relative risk of crash occurrence was examined through within-stratum one-covariate logistic regression models. The hazard ratio (resultant change in log odds of observing a crash by changing the covariate by one unit) was used as the measure of risk. The log of coefficient of variation in speed expressed as percentage, standard deviation of volume, and average occupancy expressed as percentage were found to be the most significant individual covariates affecting the odds of crash occurrence at a crash site. It was also observed that these parameters calculated at a 5-min level (as opposed to a 3-min level) are more significantly associated with crash occurrence. Hazard ratios corresponding to these covariates observed at a series of stations during six 5-min slices were plotted as a contour variable. The location and time of measurements of these parameters with respect to the location and time of the crash were used as ordinate and abscissa, respectively, in the contour plots depicting spatiotemporal variation of crash risk. The chart corresponding to the log of coefficient of variation in speed demonstrated the most clear patterns of increasing risk as the time and location of the crash are approached. On the basis of these spatiotemporal patterns, a methodology with which to identify freeway black spots in real time is proposed. This information could be used by traffic management centers to take preventive measures to avoid crashes or to prepare law enforcement and emergency vehicles for the impending situation

    Using Conditional Inference Forests to Identify the Factors Affecting Crash Severity on Arterial Corridors

    Get PDF
    Introduction The study aims at identifying traffic/highway design/driver-vehicle information significantly related with fatal/severe crashes on urban arterials for different crash types. Since the data used in this study are observational (i.e., collected outside the purview of a designed experiment), an information discovery approach is adopted for this study. Method Random Forests, which are ensembles of individual trees grown by CART (Classification and Regression Tree) algorithm, are applied in numerous applications for this purpose. Specifically, conditional inference forests have been implemented. In each tree of the conditional inference forest, splits are based on how good the association is. Chi-square test statistics are used to measure the association. Apart from identifying the variables that improve classification accuracy, the methodology also clearly identifies the variables that are neutral to accuracy, and also those that decrease it. Results The methodology is quite insightful in identifying the variables of interest in the database (e.g., alcohol/ drug use and higher posted speed limits contribute to severe crashes). Failure to use safety equipment by all passengers and presence of driver/passenger in the vulnerable age group (more than 55 years or less than 3 years) increased the severity of injuries given a crash had occurred. A new variable, ‘element’ has been used in this study, which assigns crashes to segments, intersections, or access points based on the information from site location, traffic control, and presence of signals. Impact The authors were able to identify roadway locations where severe crashes tend to occur. For example, segments and access points were found to be riskier for single vehicle crashes. Higher skid resistance and k-factor also contributed toward increased severity of injuries in crashes

    Using Connected Vehicle Trajectory Data to Evaluate the Effects of Speeding

    Full text link
    Speeding has been and continues to be a major contributing factor to traffic fatalities. Various transportation agencies have proposed speed management strategies to reduce the amount of speeding on arterials. While there have been various studies done on the analysis of speeding proportions above the speed limit, few studies have considered the effect on the individual's journey. Many studies utilized speed data from detectors, which is limited in that there is no information of the route that the driver took. This study aims to explore the effects of various roadway features an individual experiences for a given journey on speeding proportions. Connected vehicle trajectory data was utilized to identify the path that a driver took, along with the vehicle related variables. The level of speeding proportion is predicted using multiple learning models. The model with the best performance, Extreme Gradient Boosting, achieved an accuracy of 0.756. The proposed model can be used to understand how the environment and vehicle's path effects the drivers' speeding behavior, as well as predict the areas with high levels of speeding proportions. The results suggested that features related to an individual driver's trip, i.e., total travel time, has a significant contribution towards speeding. Features that are related to the environment of the individual driver's trip, i.e., proportion of residential area, also had a significant effect on reducing speeding proportions. It is expected that the findings could help inform transportation agencies more on the factors related to speeding for an individual driver's trip

    Recurrence Relations for Moments of Dual Generalized Order Statistics from Weibull Gamma Distribution and Its Characterizations

    Get PDF
    In this paper, we establish explicit forms and new recurrence relations satisfied by the single and product moments of dual generalized order statistics from Weibull gamma distribution (WGD). The results include as particular cases the relations for moments of reversed order statistics and lower records.We present characterizations ofWGD based on (i) recurrence relation for single moments, (ii) truncated moments of certain function of the variable and (iii) hazrad function

    A Proposed ANN-Based Acceleration Control Scheme for Soft Starting Induction Motor

    Get PDF
    In this article, a new soft starting control scheme based on an artificial neural network (ANN) is presented for a three-phase induction motor (IM) drive system. The main task of the control scheme is to keep the accelerating torque constant at a level based on the value of reference acceleration. This is accomplished by the proper choice of the firing angles of thyristors in the soft starter. Using the ANN approach, the complexity of the online determination of the thyristors firing angles is resolved. The IM torque-speed characteristic curves are firstly used to train the ANN model. Secondly, the IM- soft starter system is modeled using MATLAB/SIMULINK. To prove the effectiveness of the proposed ANN-based acceleration control scheme, different reference accelerations and loading conditions are applied and investigated. Finally, a laboratory prototype of 3 kW soft starter is implemented. The proposed control scheme is executed in a real-time environment using a digital signal processor (Model: TMS320F28335). The simulation and real-time results significantly confirm that the proposed controller can efficiently reduce the IM starting current and torque pulsations. This in turn ensures a smooth acceleration of the IM during the starting process. Moreover, the proposed control scheme has the superiority over several soft starting control schemes since it has a simple control circuit configuration, less required sensors, and low computational burden of the control algorithm. © 2021 Institute of Electrical and Electronics Engineers Inc.. All rights reserved
    corecore